Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202404885, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622059

ABSTRACT

There is an urgent need to improve conventional cancer-treatments by preventing detrimental side effects, cancer recurrence and metastases. Recent studies have shown that presence of senescent cells in tissues treated with chemo- or radiotherapy can be used to predict the effectiveness of cancer treatment. However, although the accumulation of senescent cells is one of the hallmarks of cancer, surprisingly little progress has been made in development of strategies for their detection in vivo. To address a lack of detection tools, we developed a biocompatible, injectable organic nanoprobe (NanoJagg), which is selectively taken up by senescent cells and accumulates in the lysosomes. The NanoJagg probe is obtained by self-assembly of indocyanine green (ICG) dimers using a scalable manufacturing process and characterized by a unique spectral signature suitable for both photoacoustic tomography (PAT) and fluorescence imaging. In vitro, ex vivo and in vivo studies all indicate that NanoJaggs are a clinically translatable probe for detection of senescence and their PAT signal makes them suitable for longitudinal monitoring of the senescence burden in solid tumors after chemotherapy or radiotherapy.

2.
Mol Ther Nucleic Acids ; 32: 454-467, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37168797

ABSTRACT

A gene-silencing platform (miQURE) has been developed and successfully used to deliver therapeutic microRNA (miRNA) to the brain, reducing levels of neurodegenerative disease-causing proteins/RNAs via RNA interference and improving the disease phenotype in animal models. This study evaluates the use of miQURE technology to deliver therapeutic miRNA for liver-specific indications. Angiopoietin-like 3 (ANGPTL3) was selected as the target mRNA because it is produced in the liver and because loss-of-function ANGPTL3 mutations and/or pharmacological inhibition of ANGPTL3 protein lowers lipid levels and reduces cardiovascular risk. Overall, 14 candidate miRNA constructs were tested in vitro, the most potent of which (miAngE) was further evaluated in mice. rAAV5-miAngE led to dose-dependent (≤-77%) decreases in Angptl3 mRNA in WT mice with ≤-90% reductions in plasma ANGPTL3 protein. In dyslipidemic APOE∗3-Leiden.CETP mice, AAV5-miAngE significantly reduced cholesterol and triglyceride levels vs. vehicle and scrambled (miSCR) controls when administrated alone, with greater reductions when co-administered with lipid-lowering therapy (atorvastatin). A significant decrease in total atherosclerotic lesion area (-58% vs. miSCR) was observed in AAV5-miAngE-treated dyslipidemic mice, which corresponded with the maintenance of a non-diseased plaque phenotype and reduced lesion severity. These results support the development of this technology for liver-directed indications.

3.
Cells ; 11(22)2022 11 14.
Article in English | MEDLINE | ID: mdl-36429023

ABSTRACT

The HIF-1 and HIF-2 (HIF1/2) hypoxia responses are frequently upregulated in cancers, and HIF1/2 inhibitors are being developed as anticancer drugs. How could cancers resist anti-HIF1/2 therapy? We studied metabolic and molecular adaptations of HIF-1ß-deficient Hepa-1c4, a hepatoma model lacking HIF1/2 signalling, which mimics a cancer treated by a totally effective anti-HIF1/2 agent. [1,2-13C2]-D-glucose metabolism was measured by SiDMAP metabolic profiling, gene expression by TaqMan, and metabolite concentrations by 1H MRS. HIF-1ß-deficient Hepa-1c4 responded to hypoxia by increasing glucose uptake and lactate production. They showed higher glutamate, pyruvate dehydrogenase, citrate shuttle, and malonyl-CoA fluxes than normal Hepa-1 cells, whereas pyruvate carboxylase, TCA, and anaplerotic fluxes decreased. Hypoxic HIF-1ß-deficient Hepa-1c4 cells increased expression of PGC-1α, phospho-p38 MAPK, and PPARα, suggesting AMPK pathway activation to survive hypoxia. They had higher intracellular acetate, and secreted more H2O2, suggesting increased peroxisomal fatty acid ß-oxidation. Simultaneously increased fatty acid synthesis and degradation would have "wasted" ATP in Hepa-1c4 cells, thus raising the [AMP]:[ATP] ratio, and further contributing to the upregulation of the AMPK pathway. Since these tumour cells can proliferate without the HIF-1/2 pathways, combinations of HIF1/2 inhibitors with PGC-1α or AMPK inhibitors should be explored.


Subject(s)
AMP-Activated Protein Kinases , Hydrogen Peroxide , Humans , AMP-Activated Protein Kinases/metabolism , Cell Hypoxia/physiology , Hypoxia/metabolism , Hypoxia-Inducible Factor 1/metabolism , Fatty Acids/metabolism , Adenosine Triphosphate/metabolism
4.
Cancer Res ; 82(8): 1658-1668, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35404400

ABSTRACT

Angiogenesis is an established prognostic factor in advanced breast cancer, yet response to antiangiogenic therapies in this disease remains highly variable. Noninvasive imaging biomarkers could help identify patients that will benefit from antiangiogenic therapy and provide an ideal tool for longitudinal monitoring, enabling dosing regimens to be altered with real-time feedback. Photoacoustic tomography (PAT) is an emerging imaging modality that provides a direct readout of tumor hemoglobin concentration and oxygenation. We hypothesized that PAT could be used in the longitudinal setting to provide an early indication of response or resistance to antiangiogenic therapy. To test this hypothesis, PAT was performed over time in estrogen receptor-positive and estrogen receptor-negative breast cancer xenograft mouse models undergoing treatment with the antiangiogenic bevacizumab as a single agent. The cohort of treated tumors, which were mostly resistant to the treatment, contained a subset that demonstrated a clear survival benefit. At endpoint, the PAT data from the responding subset showed significantly lower oxygenation and higher hemoglobin content compared with both resistant and control tumors. Longitudinal analysis revealed that tumor oxygenation diverged significantly in the responding subset, identifying early treatment response and the evolution of different vascular phenotypes between the subsets. Responding tumors were characterized by a more angiogenic phenotype when analyzed with IHC, displaying higher vessel density, yet poorer vascular maturity and elevated hypoxia. Taken together, our findings indicate that PAT shows promise in providing an early indication of response or resistance to antiangiogenic therapy. SIGNIFICANCE: Photoacoustic assessment of tumor oxygenation is a noninvasive early indicator of response to bevacizumab therapy, clearly distinguishing between control, responding, and resistant tumors within just a few weeks of treatment.


Subject(s)
Breast Neoplasms , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Animals , Bevacizumab/pharmacology , Bevacizumab/therapeutic use , Breast Neoplasms/blood supply , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Female , Hemoglobins , Humans , Mice , Neovascularization, Pathologic/diagnostic imaging , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Receptors, Estrogen , Tomography
5.
Cells ; 10(9)2021 09 09.
Article in English | MEDLINE | ID: mdl-34572020

ABSTRACT

In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor, which is overexpressed in a broad range of human cancers. HIF inhibitors are under pre-clinical investigation and clinical trials, but there is evidence that hypoxic cancer cells can adapt metabolically to HIF-1 inhibition, which would provide a potential route for drug resistance. Here, we review accumulating evidence of such adaptions in carbohydrate and creatine metabolism and other HIF-1-independent mechanisms that might allow cancers to survive hypoxia despite anti-HIF-1 therapy. These include pathways in glucose, glutamine, and lipid metabolism; epigenetic mechanisms; post-translational protein modifications; spatial reorganization of enzymes; signalling pathways such as Myc, PI3K-Akt, 2-hyxdroxyglutarate and AMP-activated protein kinase (AMPK); and activation of the HIF-2 pathway. All of these should be investigated in future work on hypoxia bypass mechanisms in anti-HIF-1 cancer therapy. In principle, agents targeted toward HIF-1ß rather than HIF-1α might be advantageous, as both HIF-1 and HIF-2 require HIF-1ß for activation. However, HIF-1ß is also the aryl hydrocarbon nuclear transporter (ARNT), which has functions in many tissues, so off-target effects should be expected. In general, cancer therapy by HIF inhibition will need careful attention to potential resistance mechanisms.


Subject(s)
Adaptation, Physiological/physiology , Cell Hypoxia/physiology , Hypoxia-Inducible Factor 1/metabolism , Neoplasms/metabolism , Animals , Humans , Signal Transduction/physiology
6.
Biomacromolecules ; 15(3): 699-706, 2014 Mar 10.
Article in English | MEDLINE | ID: mdl-24506273

ABSTRACT

We report on self-healing, pH-responsive hydrogels that are entirely protein-based. The protein is a denovo designed recombinant triblock polypeptide of 66 kg/mol consisting of a silk-like middle block (GAGAGAGH)48, flanked by two long collagen-inspired hydrophilic random coil side blocks. The pH-dependent charge on the histidines in the silk block controls folding and stacking of the silk block. At low pH the protein exists as monomers, but above pH 6 it readily self-assembles into long fibers. At higher concentrations the fibers form self-healing physical gels. Optimal gel strength and self-healing are found at a pH of around 7. The modulus of a 2 wt % gel at pH 7 is G' = 1700 Pa. Being protein-based, and amenable to further sequence engineering, we expect that these proteins are promising scaffold materials to be developed for a broad range of biomedical applications.


Subject(s)
Collagen/chemistry , Hydrogels/chemistry , Peptides/chemistry , Polymers/chemistry , Humans , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Macromolecular Substances , Rheology/methods
7.
Biomacromolecules ; 14(1): 48-55, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23214439

ABSTRACT

In this report, we study the self-assembly of two silk-elastin-like proteins: one is a diblock S(24)E(40) composed of 24 silk-like (S) repeats and 40 elastin-like (E) repeats; the other is a triblock S(12)C(4)E(40), in which the S and E blocks are separated by a random coil block (C(4)). Upon lowering the pH, the acidic silk-like blocks fold and self-assemble into fibrils by a nucleation-and-growth process. While silk-like polymers without elastin-like blocks form fibrils by heterogeneous nucleation, leading to monodisperse populations, the elastin-like blocks allow for homogeneous nucleation, which gives rise to polydisperse length distributions, as well as a concentration-dependent fibril length. Moreover, the elastin-like blocks introduce temperature sensitivity: at high temperature, the fibrils become sticky and tend to bundle and aggregate in an irreversible manner. Concentrated solutions of S(12)C(4)E(40) form weak gels at low pH that irreversibly lose elasticity in temperature cycling; this is also attributed to fibril aggregation.


Subject(s)
Elastin/chemistry , Polymers/chemistry , Silk/chemistry , Temperature , Amino Acid Sequence , Elastin/genetics , Hydrogen-Ion Concentration , Molecular Sequence Data , Silk/genetics
8.
Biomacromolecules ; 13(5): 1250-8, 2012 May 14.
Article in English | MEDLINE | ID: mdl-22404251

ABSTRACT

The melting properties of various triblock copolymers with random coil middle blocks (100-800 amino acids) and triple helix-forming (Pro-Gly-Pro)(n) end blocks (n = 6-16) were compared. These gelatin-like molecules were produced as secreted proteins by recombinant yeast. The investigated series shows that the melting temperature (T(m)) can be genetically engineered to specific values within a very wide range by varying the length of the end block. Elongation of the end blocks also increased the stability of the helices under mechanical stress. The length-dependent melting free energy and T(m) of the (Pro-Gly-Pro)(n) helix appear to be comparable for these telechelic polymers and for free (Pro-Gly-Pro)(n) peptides. Accordingly, the T(m) of the polymers appeared to be tunable independently of the nature of the investigated non-cross-linking middle blocks. The flexibility of design and the amounts in which these nonanimal biopolymers can be produced (g/L range) create many possibilities for eventual medical application.


Subject(s)
Biopolymers/chemistry , Collagen/chemistry , Biopolymers/genetics , Genetic Engineering , Models, Molecular , Protein Stability , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
9.
BMC Cancer ; 11: 198, 2011 May 25.
Article in English | MEDLINE | ID: mdl-21612605

ABSTRACT

BACKGROUND: HIF-1 deficiency has marked effects on tumour glycolysis and growth. We therefore investigated the consequences of HIF-1 deficiency in mice, using the well established Hepa-1 wild-type (WT) and HIF-1ß-deficient (c4) model. These mechanisms could be clinically relevant, since HIF-1 is now a therapeutic target. METHODS: Hepa-1 WT and c4 tumours grown in vivo were analysed by 18FDG-PET and 19FDG Magnetic Resonance Spectroscopy for glucose uptake; by HPLC for adenine nucleotides; by immunohistochemistry for GLUTs; by immunoblotting and by DIGE followed by tandem mass spectrometry for protein expression; and by classical enzymatic methods for enzyme activity. RESULTS: HIF-1ß deficient Hepa-1 c4 tumours grew significantly more slowly than WT tumours, and (as expected) showed significantly lower expression of many glycolytic enzymes. However, HIF-1ß deficiency caused no significant change in the rate of glucose uptake in c4 tumours compared to WT when assessed in vivo by measuring fluoro-deoxyglucose (FDG) uptake. Immunohistochemistry demonstrated less GLUT-1 in c4 tumours, whereas GLUT-2 (liver type) was similar to WT. Factors that might upregulate glucose uptake independently of HIF-1 (phospho-Akt, c-Myc) were shown to have either lower or similar expression in c4 compared to WT tumours. However the AMP/ATP ratio was 4.5 fold higher (p < 0.01) in c4 tumours, and phosphofructokinase-1 (PFK-1) activity, measured at prevailing cellular ATP and AMP concentrations, was up to two-fold higher in homogenates of the deficient c4 cells and tumours compared to WT (p < 0.001), suggesting that allosteric PFK activation could explain their normal level of glycolysis. Phospho AMP-Kinase was also higher in the c4 tumours. CONCLUSIONS: Despite their defective HIF-1 and consequent down-regulation of glycolytic enzyme expression, Hepa-1 c4 tumours maintain glucose uptake and glycolysis because the resulting low [ATP] high [AMP] allosterically activate PFK-1. This mechanism of resistance would keep glycolysis functioning and also result in activation of AMP-Kinase and growth inhibition; it may have major implications for the therapeutic activity of HIF inhibitors in vivo. Interestingly, this control mechanism does not involve transcriptional control or proteomics, but rather the classical activation and inhibition mechanisms of glycolytic enzymes.


Subject(s)
Adaptation, Biological , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Carcinoma, Hepatocellular/metabolism , Hypoxia-Inducible Factor 1/deficiency , Liver Neoplasms/metabolism , Phosphofructokinases/metabolism , Up-Regulation , Adenylate Kinase/metabolism , Allosteric Regulation , Animals , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Enzyme Activation , Glucose/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Glycolysis/genetics , Liver Neoplasms/genetics , Mice , Mice, Nude , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...